nk C	B3C051		Total pages:2		
Reg I	No	Name:			
	APJ ABDUL KALAM	I TECHNOLOGICAL UNIVERS	ITY		
	THIRD SEMESTER B.TECH	DEGREE EXAMINATION, JANU	JARY 2017		
	Co	ourse Code: EC203			
	Course Name: SO	LID STATE DEVICES (AE, EC)			
Max.	Marks: 100		Duration: 3 Hours		
		PART A			
	Question No. 1 is co	ompulsory. Answer question No. 2 o	or 3		
1.	(a) Derive the expression $n_0p_0=1$	n _i ² from fundamentals.	(5)		
	(b) A germanium sample is doped with 10 ¹⁶ boron atoms per cm ³ . Find the electron				
	concentration. Intrinsic carrie	er concentration of germanium is 2.5	$5 \times 10^{13} / \text{cm}^3 \text{at} 300 \text{K}.$		
			(5)		
	(c) An n- type silicon sample wi	th $N_d = 10^{15} / \text{cm}^3$ is steadily illuminated	ated such that $g_{op} =$		
	10^{20} EHP/cm ³ -sec. If 0 _n =	$\int_{p} = 1 \mu \sec$ for this excitation. Draw	the energy band		
	diagram with the quasi Ferm	i levels at 300K. Intrinsic carrier co	ncentration of silicon is		
	$1.5 \times 10^{10} / \text{cm}^{3}$		(5)		
2.	(a) Explain the temperature dependence of carrier concentration of an extrinsic				
	semiconductor with the help of g	graph.	(5)		
	(b) What is Hall Effect? Derive the expression for finding the carrier concentration of a				
	semiconductor from Hall voltage		(10)		
		OR			
3.	(a) What is Einstein Relation? D	erive the expression.	(5)		
	(b) Derive Continuity equation. Find the expression for the distribution of carriers in a				
	semi-infinite semiconductor b	oar if steady injection of carriers occ	curs at one end. (10)		
		PART B			

Question No. 4 is compulsory. Answer question No. 5 or 6

- 4. (a) Draw the charge density and electric field distribution within the transition region of a PN Junction with $N_d < N_a$. Label all the details. (5)
 - (b) An abrupt silicon PN junction has N_d = 10^{15} /cm 3 and N_a = 10^{17} /cm 3 . Draw the energy band diagram of the junction at equilibrium at 300K and find its contact potential

	B3C051 Total pa	ages:2
	from the diagram. Energy gap of silicon is 1.11eV and intrinsic carrier concentra	tion is
	$1.5 \times 10^{10} / \text{cm}^3$.	(5)
	(d) Explain the working of Tunnel diode. Draw its characteristics curve.	(5)
5.	(a) Derive Ideal diode equation.	(10)
	(b) Draw the electron and hole component of current in a forward biased PN jun	ction.
	Given that $N_d < N_a$	(5)
	OR	
6.	(a) Explain the break down mechanisms occurred in abrupt PN junctions.	(10)
	(b) What is the depletion capacitance of a PN junction? Explain its variation with	1
	reverse bias voltage.	(5)
	PART C	
	Question No. 7 is compulsory. Answer question No. 8 or 9	
7.	(a) Derive the expression for terminal currents of a transistor.	(10)
	(b) Draw the energy band diagram of a MOS capacitor in accumulation and in ir	nversior
	condition.	(5)
	(c) Explain the CV characteristics of a MOS capacitor	(5)
8.	(a) What are the mechanisms which cause base current in a transistor?	(5)
	(b) Draw the minority carrier distribution in PNP transistor during active mode.	(5)
	(c) Explain the amplification action of a transistor.	(5)
	(d) What is base width modulation?	(5)
	OR	
9.	(a) Explain the output characteristics of a MOSFET.	(5)
	(b) Derive the expression for drain current of MOSFET.	(10)
	(c) A silicon n channel MOSFET has μ_n =600cm 2 /V-sec, C_{ox} =1.2 × 10 $^{-7}$ F/cm 2 ,	
	$W=50\mu m$, $L=10\mu m$ and $V_{TH}=0.8V$. Find the drain current when	
	(i). $V_{GS}=2V$ and $V_{DS}=1V$	

(5)

(ii) $V_{GS}\!\!=\!\!3V$ and $V_{DS}\!\!=\!\!5V$